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Abstract—This paper explores the application of linear 

algebraic principles, specifically eigenvalues, eigenvectors 

and diagonalization in solving homogeneous linear Ordinary 

Differential Equations (ODEs). It demonstrates how a high-

order ODE can be reduced into a simpler system of equations. 

Furthermore, the usage of matrix diagonalization will be 

applied to further simplify the produced matrix into a more 

manageable form, that is easier to compute. Result shows that 

these methods are able to effectively compute the solution to 

various differential equations. While linear algebra is a 

powerful tool in reducing the complexity of high-order 

differential equations, it is important to note that the 

approach does not universally apply to all types of differential 

equations. This paper emphasizes that linear algebra is just 

one of many tools in the mathematical toolkit. Regardless, it 

is a valuable tool, highlighting the importance of a 

collaborative approach where multiple different disciplines 

complement each other for efficient problem-solving. 

 

Keywords—eigenvalues, eigenvectors, diagonalization, 

Ordinary Differential Equations (ODE). 

 

 

I.   INTRODUCTION 

Ordinary Differential Equations (ODEs) are important 

part of our real world. They help model systems across 

both scientific and non scientific fields. Due to their roots 

in calculus, solutions are traditionally found using a 

calculus-based approach. Methods such as variation of 

parameters or separation of variables are just one of many 

in solving ODEs using a calculus-based approach. While 

these techniques are widely used for simpler, low-order 

ODEs, they have proven to be inconvenient for more 

complex, high-order ODEs. As the complexities of the 

problems grow, these calculus-based method has been 

shown to be more intensive and error-prone. 

To solve these problems efficiently, a different approach 

must be taken. Despite being a different field of 

mathematics altogether, linear algebra has strong ties with 

calculus. High-order ODEs can be transformed into a 

matrix-based system of coupled first-order ODEs. This 

linear algebraic approach allows the usage of techniques 

such as eigenvalues and eigenvectors decomposition to 

simplify the problem and find the solution. By leveraging 

the properties of linear algebra, more efficient solutions 

can be found, while also being more computationally 

feasible and less error-prone. 

This research explores the application of linear algebra 

concepts such as eigenvalues, eigenvectors and matrix 

diagonalization in solving higher-order ODEs. This 

research aims to demonstrate the strong connection 

between linear algebra and calculus by taking a linear 

algebraic approach to an inherently calculus problem. This 

paper focuses on the theoretical foundation on the concepts 

used, the mathematics involved and how it can be 

implemented using the programming language Python. 

 

II.  THEORETICAL FOUNDATION 

A. Ordinary Differential Equations 

Ordinary Differential Equations are mathematical 

equations involving a function and its derivatives with 

respect to a single independent variable. The general form 

of an ODE is: 

 

𝐹 (𝑥, 𝑦,
𝑑𝑦

𝑑𝑥
,
𝑑2𝑦

𝑑𝑥2
, … ,

𝑑𝑛𝑦

𝑑𝑥𝑛
) = 0 

 

where 𝐹 is the function, 𝑥 is the independent variable and 

𝑦 is the dependent variable, with 
𝑑𝑦

𝑑𝑥
 as the first derivative 

of 𝑦 with respect to 𝑥, 
𝑑2𝑦

𝑑𝑥2 as the second derivative of 𝑦 

 with respect to 𝑥 and so on. 

Order is a common term when talking about ODEs. The 

order of an ODE is determined by the highest derivative of 

the dependent variable 𝑦 with respect to the independent 

variable 𝑥. Higher order ODEs typically describe more 

intricate behaviors. 

In (1), the right side of the equation equals zero. This 

indicates that the equation is homogeneous. If all terms 

include the dependent variable 𝑦 or its derivatives, then the 

ODE is homogeneous. An ODE is non-homogeneous if 

there is a term that is independent of the dependent variable 

𝑦 and its derivatives. Below is an example of a non-

homogeneous ODE: 

(1) 
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𝐹 (𝑥, 𝑦,
𝑑𝑦

𝑑𝑥
,
𝑑2𝑦

𝑑𝑥2
, … ,

𝑑𝑛𝑦

𝑑𝑥𝑛
) = 𝑔(𝑥) 

 

where 𝐹 is the function, 𝑥 is the independent variable, 𝑦 is 

the dependent variable and 𝑔(𝑥) is the non-homogeneous 

term. 

B. First-Order Linear Differential Equations 

As explained before, a first-order differential equation 

involves the first derivative of an unknown function. 

Consider this first-order linear differential function: 

 
𝑑𝑦

𝑑𝑥
= 𝑘𝑦 

 

To find the general solution, one must separate the 

variables so that the equation becomes: 
1

𝑦
𝑑𝑦 = 𝑘 𝑑𝑥 

Integrate both sides: 

∫
1

𝑦
𝑑𝑦 = ∫𝑘 𝑑𝑥 

ln |𝑦| = 𝑘𝑥 + 𝐶 

To solve for y, exponentiate both sides: 

𝑒ln |𝑦| = 𝑒𝑘𝑥+𝐶  

|𝑦| = 𝑒𝑘𝑥+𝐶 

|𝑦| = 𝑒𝑘𝑥𝑒𝐶 

Let 𝑒𝐶 be a new constant 𝐶1: 

|𝑦| = 𝐶1𝑒
𝑘𝑥 

𝑦(𝑥) = 𝐶1𝑒
𝑘𝑥 

 

This is the general solution for this first-order linear 

differential equation. If given an initial condition such as 

𝑦(0), then the solution becomes: 

𝑦(0) = 𝐶1𝑒
𝑘∙0 

𝑦(0) = 𝐶1 

Substitute 𝐶1 into (4): 

 

𝑦(𝑥) = 𝑒𝑘𝑥𝑦(0) 

 

Therefore, the unique solution to a first-order linear 

differential equation is obtained. 

 

C. Conversion to a First-Order System 

Higher-order ODEs can be converted into a couple 

system of first-order ODEs. To convert a higher-order 

ODE into a system of first-order ODEs, new variables that 

represent the derivative of the dependent variable must be 

introduced. Consider the following general form of an nth-

order ODE: 

 

𝑑𝑛𝑦

𝑑𝑥𝑛
+ 𝑎𝑛−1

𝑑𝑛−1𝑦

𝑑𝑥𝑛−1
+ ⋯ + 𝑎1

𝑑𝑦

𝑑𝑥
+ 𝑎0𝑦 = 0 

 

To reduce the order of the equation, new variables 𝑦1, 

𝑦2, …, 𝑦𝑛 are introduced. Each of these variables represent 

a derivative of 𝑦. The substitutions are as follows: 

𝑦1 = 𝑦 

𝑦2 =
𝑑𝑦

𝑑𝑥
 

⋮ 

𝑦𝑛 =
𝑑𝑛−1𝑦

𝑑𝑥𝑛−1
 

Consider the following: 
𝑑𝑦1

𝑑𝑥
= 𝑦2 

𝑑𝑦2

𝑑𝑥
= 𝑦3 

⋮ 
𝑑𝑦n-1

𝑑𝑥
= 𝑦n 

𝑑𝑦n

𝑑𝑥
=

𝑑𝑛𝑦

𝑑𝑥𝑛
 

By rearranging (6) and isolating 
𝑑𝑛𝑦

𝑑𝑥𝑛 on the left-hand side 

while moving the other terms to the right-hand side, one 

gets the following equation: 

 

𝑑𝑛𝑦

𝑑𝑥𝑛
= −𝑎0𝑦 − 𝑎1

𝑑𝑦

𝑑𝑥
− ⋯− 𝑎𝑛−1

𝑑𝑛−1𝑦

𝑑𝑥𝑛−1
 

 

Substituting 𝑦1, 𝑦2, …, 𝑦𝑛 into (7) gets the following: 

 
𝑑𝑦n

𝑑𝑥
=

𝑑𝑛𝑦

𝑑𝑥𝑛
= −𝑎0𝑦1 − 𝑎1𝑦2 − ⋯ − 𝑎𝑛−1𝑦n 

 

This system of first-order ODEs can be represented in 

matrix form as: 

 

𝑑

𝑑𝑥

[
 
 
 
 

𝑦1

𝑦2

⋮
𝑦𝑛−1

𝑦𝑛 ]
 
 
 
 

=

[
 
 
 
 

0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 0 1

−𝑎0 −𝑎1 −𝑎2 ⋯ −𝑎𝑛−2 −𝑎𝑛−1]
 
 
 
 

[
 
 
 
 

𝑦1

𝑦2

⋮
𝑦𝑛−1

𝑦𝑛 ]
 
 
 
 

 

𝑑

𝑑𝑥
𝐲 = 𝐀𝐲 

 

where 𝐲 is a vector of variables and 𝐀 is the coefficient 

matrix. This approach offers a way for a more efficient 

solution to solving ODEs. 

 

D. Eigenvalues and Eigenvectors 

Eigenvalues and eigenvectors are fundamental concepts 

in the field of linear algebra. They are crucial in the 

understanding of linear transformation represented by 

matrices. Given a square matrix 𝐀 of size 𝑛 × 𝑛, the 

eigenvectors 𝐱 and the eigenvalues 𝜆 of 𝐀 satisfy the 

following equation: 

 

𝐀𝐱 = 𝜆𝐱 

 

From this equation, it is observed that the matrix-vector 

multiplication between the matrix 𝐀 and the vector 𝐱 is 

equivalent to scaling the vector 𝐱 by a factor of 𝜆. In other 

words, the eigenvalue is a scalar indicating how much 𝐱 is 

compressed or stretched while the eigenvector is a nonzero 

vector that under the linear transformation defined by 𝐀 is 

scaled by the eigenvalue. Below is an illustration: 

(6) 

 

(7) 

 

(8) 

 

(2) 

 

(9) 

 

(3) 

(4) 

 

(5) 

 

(10) 
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Figure 2.1. Eigenvector and Its Transformation 

Source: Author 

The eigenvalue represents the magnitude of the 

transformation, while the eigenvector represents the 

direction of the transformation. There are 3 main types of 

transformation which are associated with eigenvalues and 

eigenvectors which are: 

1. If 𝜆 >  1, then the eigenvector is stretched. 

2. If 0 <  𝜆 <  1, then the eigenvector is compressed. 

3. If 𝜆 <  0, then the eigenvector is flipped. 

The eigenvalues 𝜆 can be found using the characteristic 

equation below: 

 

𝑑𝑒𝑡(𝜆𝐼 − 𝐴) = 0 

 

This equation is derived from: 

𝐀𝐱 = 𝜆𝐱 

I𝐀𝐱 = 𝜆I𝐱 

𝐀𝐱 = 𝜆I𝐱 

(𝜆I − 𝐀)𝐱 = 0 

 

To ensure a non-trivial solution, the determinant of (𝜆I −
𝐀) must be zero. Thus, the characteristic equation (11) is 

obtained and the eigenvalues of matrix 𝐀 correspond to the 

roots of the equation. To find the eigenvectors, one simply 

substitute the eigenvalue obtained from (11) into (12). 

 

E. Diagonalization 

A diagonal matrix is a square matrix in which every 

element outside of the main diagonal is zero. A diagonal 

matrix 𝐷 with size 𝑛 × 𝑛 is written as follows: 

 

𝐃 =

[
 
 
 
 
𝑑1 0 0 ⋯ 0
0 𝑑2 0 ⋯ 0
0 0 𝑑3 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 𝑑𝑛]

 
 
 
 

 

 

A square matrix can be converted into a diagonal matrix 

through a process called diagonalization. Matrix 𝐀 is 

diagonizable if there exist an eigenvector matrix 𝐏 such 

that 𝐏−𝟏𝐀𝐏 is a diagonal matrix. The formula is as follows: 

 

𝐏−𝟏𝐀𝐏 = 𝐃 

 

An eigenvector matrix is a matrix in which the columns are 

the eigenvector of a given matrix, in this case matrix 𝐀. 
Note that not all square matrices can be converted into a 

diagonal matrix. For a matrix to be diagonizable, it must 

have a full set of linearly independent eigenvectors. In the 

case of a 3 × 3 matrix, it must have 3 linearly independent 

eigenvectors to be diagonizable. 

 

F. Matrix Exponentiation 

Diagonalizing a matrix simplifies many matrix 

operations and make subsequent computations much more 

efficient. One such use is to compute matrix powers. 

Observe the formula below: 

 

𝐀 = 𝐏𝐃𝐏−𝟏 

 

To find 𝐀k where k is any positive: 

𝐀k = (𝐏𝐃𝐏−𝟏)k 

𝐀k = 𝐏𝐃k𝐏−𝟏 

 

The 𝐏 and 𝐏−𝟏 will cancel each other out, leaving only one 

set of 𝐏 and 𝐏−𝟏. This is significantly easier to do than 

directly raising 𝐀 to the power of 𝑘. Since D is a diagonal 

matrix, the process can be done by simply raising the 

diagonal element to the power of 𝑘 which is much more 

efficient to do. 

For this research however, diagonalization will be used 

to simplify ODEs. By applying diagonalization to matrix 𝐀 

in (9), the system will be decoupled into independent 

equations which are much easier to solve. For this purpose, 

one must understand what an matrix exponential is.  

The Taylor series expansion of ex around x = 0 is 

defined by: 

𝑒𝑥 = ∑
𝑥𝑛

𝑛!

∞

𝑛=0

 

 Another form of this expression is: 

 

𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+

𝑥5

5!
+ ⋯ 

 

In the context of solving systems of linear differential 

equations, the matrix exponential 𝑒𝐀 is used. For the matrix 

exponential 𝑒𝐀, the same principle as ex applies. The 

illustration are as follows: 

 

𝑒𝐀 = 𝐼 + 𝐀 +
𝐀2

2!
+

𝐀3

3!
+

𝐀4

4!
+

𝐀5

5!
+ ⋯ 

 

This concept is important because as discussed in 

Section II.B, the solution for first-order linear differential 

equation is:  

𝑦(𝑥) = 𝑒𝑘𝑥𝑦(0) 

where 𝑦(0) is the initial condition. Similarly for systems 

(12) 

 

(13) 

 

(14) 

 

(15) 

 

(16) 

 

(17) 

 

(18) 

 

(19) 

 

(11) 
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of linear equation, the solution can be written in terms of 

matrix exponentials: 

 

𝑦(𝑥) = 𝑒𝐀𝑥𝑦(0) 

 

where 𝐀 is a coefficient matrix. 

Despite that 𝑒𝐀𝑥 is still hard to compute, this is where 

diagonalization can be applied. Using (15), 𝑒𝐀𝑥 can be 

expressed as: 

 

𝑒𝐀𝑥 = 𝐏𝑒𝐃𝑥𝐏−𝟏 

 

Since 𝐃 is a diagonal matrix, 𝑒𝐃𝑥 can be expresses as: 

𝑒𝐃𝑥 =

[
 
 
 
 
𝑒𝑑1𝑥 0 0 ⋯ 0
0 𝑒𝑑2𝑥 0 ⋯ 0
0 0 𝑒𝑑3𝑥 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 𝑒𝑑𝑛𝑥]

 
 
 
 

 

Therefore, whenever diagonalization is possible, it is off 

the best interest to diagonalize the matrix. 

 

G. Finding The Solution 

As obtained in Section II.B, the solution of a first-order 

differential equation can be found using (5). This will be 

very useful in finding the solution of a higher-order ODEs, 

as the ODE is now just a system of first-order differential 

equations. By adapting the solution from (5), the solution 

of a high-order ODE can be obtained with  (20) or the 

following: 

𝑦(𝑥) = 𝑒𝐀𝑥𝑦(0) 

Diagonalization plays a pivotal role in simplifying 𝑒𝐀𝑥. 

By decomposing the 𝐀 matrix into 𝐀 = 𝐏𝐃𝐏−𝟏, computing 

𝑒𝐀𝑥 becomes much easier as computing 𝑒𝐃𝑥 is easier and 

less computationally taxing than computing it directly. By 

applying (21), the final solution is as follows: 

 

𝑦(𝑥) = 𝐏𝑒𝐃𝑥𝐏−𝟏𝑦(0) 

 

III.    

IMPLEMENTATION 

A. Research Limitation 

This paper focuses solely on the linear algebraic 

approach in solving ODEs. To simplify the process, the 

scope of the problem is intentionally narrowed to exclude 

calculus-based approaches. The limitations are as follows: 

1. Linear Algebra Approach Only: The solution of 

ODEs will primarily be approached through linear 

algebraic methods, particularly using eigenvalues 

and eigenvectors. Although separation of variables 

method is briefly mentioned, it is solely used as the 

standard solution for first-order linear differential 

equation in the form of  
𝑑𝑦

𝑑𝑥
= 𝑘𝑦 which frequently 

arises in the linear algebraic approach to solving 

ODEs. 

2. Exclusion of Non-Linear ODEs: Non-linear ODEs 

often requires different methods to solve. Although 

non-linear ODEs can be linearized, this process lies 

beyond the scope of this research so only linear 

ODEs are considered. 

3. Matrix Diagonalization: This paper assumes that the 

system of ODEs can be diagonalized when 

converted to matrix notation. Non-diagonalizable 

matrix are not considered. 

4. Homogeneous Systems Only: This paper will only 

focus on homogeneous ODE systems. Although a 

linear algebraic approach can be used to find the 

homogeneous solution in a non-homogeneous 

system, finding the particular solution typically 

requires a calculus-based approach. 

 

B. Programming Language 

The implementation of this program to solve Ordinary 

Differential Equations using linear algebra techniques will 

be carried out by Python. Python is chosen for the 

simplicity of its syntax and the availability of numerous 

libraries with powerful numerical tools, such as NumPy, 

SymPy and SciPy. For this implementation, only NumPy 

will be used as it provides all the necessary functionality 

needed to compute the solutions of the ODEs within the 

scope of this research. Additionally, the sys and json 

libraries will be used to help in handling user’s input.  

 

import numpy as np 
import json 
import sys 

 

C. Input Processing 

As mentioned in Section III.B, this implementation 

accommodates two methods of user interaction: JSON file 

inputs and terminal-based inputs. This allows user to 

choose their preferred method in providing the necessary 

inputs for the program to function. This program receives 

3 different input parameters: coefficient, initial conditions 

and the evaluation point (x).  

1. The coefficients represent the coefficient of the 

Ordinary Differential Equations. The coefficients 

are provided in descending order of the derivative 

terms. 

2. The initial conditions represent the value of the 

function and its derivatives at the initial point 𝑥 =
0. The number of initial conditions provided must 

be equal to the order of the ODE.  

3. The evaluation point (x) represent the point where 

the solution to the ODE will be evaluated. 

If a JSON file containing the necessary parameters is 

provided, the program will call load_data_from_json 

function. This will parse the file and extract the necessary 

parameters required for the program’s execution. 

 

def load_data_from_json(filename): 
"""Load input from a JSON file""" 
try: 
    with open(filename, 'r') as file: 
        data = json.load(file) 

(20) 

 

(21) 

 

(22) 
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    return data 
except FileNotFoundError: 
    print("Warning: JSON file not 

found. Please provide input manually.") 
    return None 

 

If a JSON file is not provided or the input is insufficient, 

the program falls back to a terminal-based input. This is 

done through the get_user_input function which will 

prompt the user and returns an error to the user if the inputs 

are not sufficient. 

 

def get_user_input(): 
"""Get user input from the terminal if 

a JSON file is not provided""" 
coefficients = list(map(float, 

input("Enter the coefficients (space-
separated): ").split())) 
     
if len(coefficients) < 2: 
    print("Error: The differential 

equation must atleast be a second-order 
differential equation") 
    sys.exit(1) 
 
y0 = list(map(float, input(f"Enter 

initial conditions (length should be 
{len(coefficients) - 1}): ").split())) 
     
if len(y0) != len(coefficients) - 1: 
    print(f"Error: The length of 

initial conditions must be 
{len(coefficients) - 1}.") 
    sys.exit(1) 
 
x = float(input("Enter the value of x: 

")) 
     
return coefficients, y0, x 

 

Input processing is further handled by the main function 

where the program ensures the necessary parameters are 

correctly retrieved. 

 

def main(): 
if len(sys.argv) == 2: 
    """Check if a JSON file is 

provided""" 
    json_file = sys.argv[1] 
         
    data = 

load_data_from_json(json_file) 
 
    if data is None: 
        coefficients, y0, x = 

get_user_input() 
    else: 

        coefficients = 
data.get('coefficients') 
        y0 = data.get('y0') 
        x = data.get('x') 
 
        if coefficients is None or 

len(coefficients) < 2: 
            print("Error: Coefficients 

must be provided.") 
            sys.exit(1) 
 
        if y0 is None or len(y0) != 

len(coefficients) - 1: 
            print(f"Error: Initial 

conditions must be provided.") 
            sys.exit(1) 
 
        if x is None: 
            print("Error: x value must 

be provided.") 
            sys.exit(1) 
 
else: 
    coefficients, y0, x = 

get_user_input() 
 

 

 

D. Convert to Matrix 

To apply linear algebra principles, the given Ordinary 

Differential Equation must be transformed into a matrix 

representation as outlined in Section II.C. To achieve this, 

start by constructing a zero matrix and populating the 

superdiagonal with ones. This will leave the last row 

unchanged. The last row is then populated by the negative 

values of the coefficients in ascending order of the 

derivatives. This is done by convert_to_matrix the 

function. 

 

def convert_to_matrix(coefficients): 
"""Convert a differential equation 

into a system of coupled first-order 
differential equations""" 
order = len(coefficients) - 1 
A = np.zeros((order, order)) 
 
for i in range(order - 1): 
    A[i, i + 1] = 1  
 
for i in range(order): 
    A[order - 1, i] = -

coefficients[order - i] / 
coefficients[0] 
 
return A 
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E. Computing the Eigenvalues and Eigenvectors 

After converting the ODE into a matrix representation, 

the next step is to calculate the eigenvalues and 

eigenvectors. Fortunately, the NumPy library has a built-in 

function numpy.linalg.eig that computes the 

eigenvalues and eigenvectors of matrix and store it inside 

an array.  

 

eigvals, eigvecs = np.linalg.eig(A) # 
Extract the eigenvalue and eigenvector 
using NumPy 

 

F. Diagonalizing and Matrix Exponentiation 

Using the extracted eigenvalues and eigenvectors, the 

diagonalized matrix can be constructed. Initially, matrix 𝐏 

is formed by placing the eigenvectors as its column vectors. 

It is very important to note that the matrix 𝐏 must be a 

square matrix otherwise matrix 𝐀 cannot be diagonalized. 

Although the scope of this research will only consider 

diagonalizable matrices, a check is still performed to 

ensure the matrix is diagonalizable. 

Another important step is to calculate the inverse of 

matrix 𝐏. This is important to compute the final solution. 

In order for a matrix to be invertible, the determinant must 

not equal zero. A diagonal matrix 𝐃 is constructed by 

populating the main diagonal of a zero matrix with the 

eigenvalues of matrix 𝐀.  

 

if eig_rows == eig_columns: # 
Diagonalizable 
 
# Construct the P matrix 
P = eigvecs 
 
# Construct the diagonal matrix 
D = np.diag(eigvals) 
 
if np.linalg.det(P) == 0: 
    print("Warning: Matrix P is 

singular and cannot be inverted.") 
    sys.exit(1) 
else: 
    P_inv = np.linalg.inv(P) 

 

 

As mentioned in Section II.F, the standard solution for a 

first-order differential equation can be found using (5). By 

adapting the formula for matrices, the matrix exponential 

𝑒𝐀𝑥 is obtained. For more efficient computation, it is 

decomposed into: 
𝑒𝐀𝑥 = 𝐏𝑒𝐃𝑥𝐏−𝟏 

As the diagonal matrix 𝐃 has already been obtained, the 

matrix 𝑒𝐃𝑥 can be easily computed. 

 

eDx = np.diag(np.exp(D.diagonal() * x)) 

 

 

G. Assembling the Solution 

To find the solution, all of the necessary components 

must be inputted to (22): 

𝑦(𝑥) = 𝐏𝑒𝐃𝑥𝐏−𝟏𝑦(0) 

To ensure that the results are presented in a more 

manageable form, 𝑦(𝑥) is rounded using NumPy’s built-in 

numpy.round function. 

y_x = P @ eDx @ P_inv @ y0 
 
y_x_rounded = np.round(y_x, 4) 

 

IV.   RESULTS AND ANALYSIS 

To test the functionality of this program, two equations 

has been chosen for evaluation, one is a second-order 

equation while the other is a fourth-order equation. 

 

A. Second-Order Differential Equation 

The equation is as follows: 

𝑦′′ − 3𝑦′ + 2𝑦 = 0 

with 𝑦(0) = 1 and 𝑦′(0) = 0. 

 

The function is going evaluated initially at 𝑥 = 0 to 

observe the result. 

 

Coefficients: 
1y'' -3y' +2y = 0 
 

Matrix A (First-Order Representation): 
[[ 0.  1.] 
 [-2.  3.]] 
 

Matrix P (Eigenmatrix): 
[[-0.70710678 -0.4472136 ] 
 [-0.70710678 -0.89442719]] 
 

Matrix P (inverted): 
[[-2.82842712  1.41421356] 
 [ 2.23606798 -2.23606798]] 
 

Diagonalized Matrix: 
[[1. 0.] 
 [0. 2.]] 
 

Initial conditions: 
y1(0) = 1 
y2(0) = 0 
 

Solution at x = 0 
[ 1. -0.] 

 

The vector returned will correspond to 𝑦 and its 

derivative in ascending order. As observed, the function 

correctly returned the value of 𝑦 and its derivatives when 

evaluated at 𝑥 = 0. This is consistent with the initial 

condition 𝑦(0) = 1 and 𝑦′(0) = 0. Changing the 

evaluation point will yield different result which can be 

done by changing the 𝑥 value. Below is an example of the 
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function evaluated at 𝑥 = 2. 

 

Coefficients: 
1y'' -3y' +2y = 0 
 

Matrix A (First-Order Representation): 
[[ 0.  1.] 
 [-2.  3.]] 
 

Matrix P (Eigenmatrix): 
[[-0.70710678 -0.4472136 ] 
 [-0.70710678 -0.89442719]] 
 

Matrix P (inverted): 
[[-2.82842712  1.41421356] 
 [ 2.23606798 -2.23606798]] 
 

Diagonalized Matrix: 
[[1. 0.] 
 [0. 2.]] 
 

Initial conditions: 
y1(0) = 1 
y2(0) = 0 
 

Solution at x = 2 
[-39.82   -94.4182] 

 

B. Fourth-Order Differential Equation 

The equation is as follows: 

𝑦(4) − 6𝑦′′′ + 11𝑦′′ − 6𝑦′ = 0 

with 𝑦(0) = 2, 𝑦′(0) = 1, 𝑦′′(0) = 0 and 𝑦′′′(0) = −1. 

Similarly to the first equation, it will be initially evaluated 

at 𝑥 = 0. 

 

Matrix A (First-Order Representation): 
[[  0.   1.   0.   0.] 
[  0.   0.   1.   0.] 
[  0.   0.   0.   1.] 
[  0.   6. -11.   6.]] 
 
Matrix P (Eigenmatrix): 
[[ 1.          0.5         0.10846523 -
0.03492151] 
[ 0.          0.5         0.21693046 -
0.10476454] 
[ 0.          0.5         0.43386092 -
0.31429363] 
[ 0.          0.5         0.86772183 -
0.9428809 ]] 
 
Matrix P (inverted): 
[[  1.          -1.83333333   1.          
-0.16666667] 
[  0.           6.          -5.           
1.        ] 
[ -0.         -13.82931669  18.43908891  

-4.60977223] 
[  0.          -9.54521404  14.31782106  
-4.77260702]] 
 
Diagonalized Matrix: 
[[0. 0. 0. 0.] 
[0. 1. 0. 0.] 
[0. 0. 2. 0.] 
[0. 0. 0. 3.]] 
 
Initial conditions: 
y1(0) = 2 
y2(0) = 1 
y3(0) = 0 
y4(0) = -1 
 

Solution at x = 0 
[ 2.  1. -0. -1.] 

 

Just like in the first equation, this equation correctly 

returns the initial condition when evaluated at 𝑥 = 0. Now, 

try evaluating at 𝑥 = 3: 

 

Coefficients: 
1y^(4) -6y''' +11y'' -6y' = 0 
 
Matrix A (First-Order Representation): 
[[  0.   1.   0.   0.] 
 [  0.   0.   1.   0.] 
 [  0.   0.   0.   1.] 
 [  0.   6. -11.   6.]] 
 
Matrix P (Eigenmatrix): 
[[ 1.          0.5         0.10846523 

-0.03492151] 
 [ 0.          0.5         0.21693046 

-0.10476454] 
 [ 0.          0.5         0.43386092 

-0.31429363] 
 [ 0.          0.5         0.86772183 

-0.9428809 ]] 
 
Matrix P (inverted): 
[[  1.          -1.83333333   1.          

-0.16666667] 
 [  0.           6.          -5.           

1.        ] 
 [ -0.         -13.82931669  

18.43908891  -4.60977223] 
 [  0.          -9.54521404  

14.31782106  -4.77260702]] 
 
Diagonalized Matrix: 
[[0. 0. 0. 0.] 
 [0. 1. 0. 0.] 
 [0. 0. 2. 0.] 
 [0. 0. 0. 3.]] 
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Initial conditions: 
y1(0) = 2 
y2(0) = 1 
y3(0) = 0 
y4(0) = -1 
 
Solution at x = 3 

[  997.6324  3294.8982 10591.1246 
33286.6612] 

 

C. Potential Improvements 

As stated in Section III.A, this method is not without its 

fault. This technique can only be used to solve linear 

homogeneous ODE. In order to solve non-linear or non-

homogeneous ODE, one must employ other calculus-based 

techniques to solve the differential equations. Certain 

matrix also cannot be diagonalized rendering this method 

unable to solve those problems. 

 

 

V.   CONCLUSION 

Linear algebra has proven to be an incredible powerful 

tool in solving Ordinary Differential Equations. By 

leveraging matrix properties, it is able to dissect a high-

order equations into simpler system of first-order ones. 

While it is powerful, its important to know that it is not a 

one-size-for-all solution. Linear algebraic methods are 

limited to certain types of ODEs, particularly those that are 

diagonizable. Many problems that involve ODE in the real 

world can involve non-linear, non-diagonizable or more 

complex ODEs. Collaboration with other mathematical 

tools and methods are important for such scenario. Linear 

algebra methods are enchanced when combined with other 

approaches. A collaborative approach must be taken to 

solve problem effectively and efficiently. 
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VII.   APPENDIX 

Full source code of the program is available at 

https://github.com/DanielDPW/Makalah_IF2123_Algeo 
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