
Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Solving Ordinary Differential Equations using

Eigenvalues and Eigenvectors: A Linear Algebra

Approach

Daniel Pedrosa Wu - 135230991,2

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113523099@std.stei.itb.ac.id, 2danielpedrosawu5705@gmail.com

Abstract—This paper explores the application of linear

algebraic principles, specifically eigenvalues, eigenvectors

and diagonalization in solving homogeneous linear Ordinary

Differential Equations (ODEs). It demonstrates how a high-

order ODE can be reduced into a simpler system of equations.

Furthermore, the usage of matrix diagonalization will be

applied to further simplify the produced matrix into a more

manageable form, that is easier to compute. Result shows that

these methods are able to effectively compute the solution to

various differential equations. While linear algebra is a

powerful tool in reducing the complexity of high-order

differential equations, it is important to note that the

approach does not universally apply to all types of differential

equations. This paper emphasizes that linear algebra is just

one of many tools in the mathematical toolkit. Regardless, it

is a valuable tool, highlighting the importance of a

collaborative approach where multiple different disciplines

complement each other for efficient problem-solving.

Keywords—eigenvalues, eigenvectors, diagonalization,

Ordinary Differential Equations (ODE).

I. INTRODUCTION

Ordinary Differential Equations (ODEs) are important

part of our real world. They help model systems across

both scientific and non scientific fields. Due to their roots

in calculus, solutions are traditionally found using a

calculus-based approach. Methods such as variation of

parameters or separation of variables are just one of many

in solving ODEs using a calculus-based approach. While

these techniques are widely used for simpler, low-order

ODEs, they have proven to be inconvenient for more

complex, high-order ODEs. As the complexities of the

problems grow, these calculus-based method has been

shown to be more intensive and error-prone.

To solve these problems efficiently, a different approach

must be taken. Despite being a different field of

mathematics altogether, linear algebra has strong ties with

calculus. High-order ODEs can be transformed into a

matrix-based system of coupled first-order ODEs. This

linear algebraic approach allows the usage of techniques

such as eigenvalues and eigenvectors decomposition to

simplify the problem and find the solution. By leveraging

the properties of linear algebra, more efficient solutions

can be found, while also being more computationally

feasible and less error-prone.

This research explores the application of linear algebra

concepts such as eigenvalues, eigenvectors and matrix

diagonalization in solving higher-order ODEs. This

research aims to demonstrate the strong connection

between linear algebra and calculus by taking a linear

algebraic approach to an inherently calculus problem. This

paper focuses on the theoretical foundation on the concepts

used, the mathematics involved and how it can be

implemented using the programming language Python.

II. THEORETICAL FOUNDATION

A. Ordinary Differential Equations

Ordinary Differential Equations are mathematical

equations involving a function and its derivatives with

respect to a single independent variable. The general form

of an ODE is:

𝐹 (𝑥, 𝑦,
𝑑𝑦

𝑑𝑥
,
𝑑2𝑦

𝑑𝑥2
, … ,

𝑑𝑛𝑦

𝑑𝑥𝑛
) = 0

where 𝐹 is the function, 𝑥 is the independent variable and

𝑦 is the dependent variable, with
𝑑𝑦

𝑑𝑥
 as the first derivative

of 𝑦 with respect to 𝑥,
𝑑2𝑦

𝑑𝑥2 as the second derivative of 𝑦

 with respect to 𝑥 and so on.

Order is a common term when talking about ODEs. The

order of an ODE is determined by the highest derivative of

the dependent variable 𝑦 with respect to the independent

variable 𝑥. Higher order ODEs typically describe more

intricate behaviors.

In (1), the right side of the equation equals zero. This

indicates that the equation is homogeneous. If all terms

include the dependent variable 𝑦 or its derivatives, then the

ODE is homogeneous. An ODE is non-homogeneous if

there is a term that is independent of the dependent variable

𝑦 and its derivatives. Below is an example of a non-

homogeneous ODE:

(1)

mailto:113523099@std.stei.itb.ac.id
mailto:2danielpedrosawu5705@gmail.com

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

𝐹 (𝑥, 𝑦,
𝑑𝑦

𝑑𝑥
,
𝑑2𝑦

𝑑𝑥2
, … ,

𝑑𝑛𝑦

𝑑𝑥𝑛
) = 𝑔(𝑥)

where 𝐹 is the function, 𝑥 is the independent variable, 𝑦 is

the dependent variable and 𝑔(𝑥) is the non-homogeneous

term.

B. First-Order Linear Differential Equations

As explained before, a first-order differential equation

involves the first derivative of an unknown function.

Consider this first-order linear differential function:

𝑑𝑦

𝑑𝑥
= 𝑘𝑦

To find the general solution, one must separate the

variables so that the equation becomes:
1

𝑦
𝑑𝑦 = 𝑘 𝑑𝑥

Integrate both sides:

∫
1

𝑦
𝑑𝑦 = ∫𝑘 𝑑𝑥

ln |𝑦| = 𝑘𝑥 + 𝐶

To solve for y, exponentiate both sides:

𝑒ln |𝑦| = 𝑒𝑘𝑥+𝐶

|𝑦| = 𝑒𝑘𝑥+𝐶

|𝑦| = 𝑒𝑘𝑥𝑒𝐶

Let 𝑒𝐶 be a new constant 𝐶1:

|𝑦| = 𝐶1𝑒
𝑘𝑥

𝑦(𝑥) = 𝐶1𝑒
𝑘𝑥

This is the general solution for this first-order linear

differential equation. If given an initial condition such as

𝑦(0), then the solution becomes:

𝑦(0) = 𝐶1𝑒
𝑘∙0

𝑦(0) = 𝐶1

Substitute 𝐶1 into (4):

𝑦(𝑥) = 𝑒𝑘𝑥𝑦(0)

Therefore, the unique solution to a first-order linear

differential equation is obtained.

C. Conversion to a First-Order System

Higher-order ODEs can be converted into a couple

system of first-order ODEs. To convert a higher-order

ODE into a system of first-order ODEs, new variables that

represent the derivative of the dependent variable must be

introduced. Consider the following general form of an nth-

order ODE:

𝑑𝑛𝑦

𝑑𝑥𝑛
+ 𝑎𝑛−1

𝑑𝑛−1𝑦

𝑑𝑥𝑛−1
+ ⋯ + 𝑎1

𝑑𝑦

𝑑𝑥
+ 𝑎0𝑦 = 0

To reduce the order of the equation, new variables 𝑦1,

𝑦2, …, 𝑦𝑛 are introduced. Each of these variables represent

a derivative of 𝑦. The substitutions are as follows:

𝑦1 = 𝑦

𝑦2 =
𝑑𝑦

𝑑𝑥

⋮

𝑦𝑛 =
𝑑𝑛−1𝑦

𝑑𝑥𝑛−1

Consider the following:
𝑑𝑦1

𝑑𝑥
= 𝑦2

𝑑𝑦2

𝑑𝑥
= 𝑦3

⋮
𝑑𝑦n-1

𝑑𝑥
= 𝑦n

𝑑𝑦n

𝑑𝑥
=

𝑑𝑛𝑦

𝑑𝑥𝑛

By rearranging (6) and isolating
𝑑𝑛𝑦

𝑑𝑥𝑛 on the left-hand side

while moving the other terms to the right-hand side, one

gets the following equation:

𝑑𝑛𝑦

𝑑𝑥𝑛
= −𝑎0𝑦 − 𝑎1

𝑑𝑦

𝑑𝑥
− ⋯− 𝑎𝑛−1

𝑑𝑛−1𝑦

𝑑𝑥𝑛−1

Substituting 𝑦1, 𝑦2, …, 𝑦𝑛 into (7) gets the following:

𝑑𝑦n

𝑑𝑥
=

𝑑𝑛𝑦

𝑑𝑥𝑛
= −𝑎0𝑦1 − 𝑎1𝑦2 − ⋯ − 𝑎𝑛−1𝑦n

This system of first-order ODEs can be represented in

matrix form as:

𝑑

𝑑𝑥

[

𝑦1

𝑦2

⋮
𝑦𝑛−1

𝑦𝑛]

=

[

0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 0 1

−𝑎0 −𝑎1 −𝑎2 ⋯ −𝑎𝑛−2 −𝑎𝑛−1]

[

𝑦1

𝑦2

⋮
𝑦𝑛−1

𝑦𝑛]

𝑑

𝑑𝑥
𝐲 = 𝐀𝐲

where 𝐲 is a vector of variables and 𝐀 is the coefficient

matrix. This approach offers a way for a more efficient

solution to solving ODEs.

D. Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors are fundamental concepts

in the field of linear algebra. They are crucial in the

understanding of linear transformation represented by

matrices. Given a square matrix 𝐀 of size 𝑛 × 𝑛, the

eigenvectors 𝐱 and the eigenvalues 𝜆 of 𝐀 satisfy the

following equation:

𝐀𝐱 = 𝜆𝐱

From this equation, it is observed that the matrix-vector

multiplication between the matrix 𝐀 and the vector 𝐱 is

equivalent to scaling the vector 𝐱 by a factor of 𝜆. In other

words, the eigenvalue is a scalar indicating how much 𝐱 is

compressed or stretched while the eigenvector is a nonzero

vector that under the linear transformation defined by 𝐀 is

scaled by the eigenvalue. Below is an illustration:

(6)

(7)

(8)

(2)

(9)

(3)

(4)

(5)

(10)

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Figure 2.1. Eigenvector and Its Transformation

Source: Author

The eigenvalue represents the magnitude of the

transformation, while the eigenvector represents the

direction of the transformation. There are 3 main types of

transformation which are associated with eigenvalues and

eigenvectors which are:

1. If 𝜆 > 1, then the eigenvector is stretched.

2. If 0 < 𝜆 < 1, then the eigenvector is compressed.

3. If 𝜆 < 0, then the eigenvector is flipped.

The eigenvalues 𝜆 can be found using the characteristic

equation below:

𝑑𝑒𝑡(𝜆𝐼 − 𝐴) = 0

This equation is derived from:

𝐀𝐱 = 𝜆𝐱

I𝐀𝐱 = 𝜆I𝐱

𝐀𝐱 = 𝜆I𝐱

(𝜆I − 𝐀)𝐱 = 0

To ensure a non-trivial solution, the determinant of (𝜆I −
𝐀) must be zero. Thus, the characteristic equation (11) is

obtained and the eigenvalues of matrix 𝐀 correspond to the

roots of the equation. To find the eigenvectors, one simply

substitute the eigenvalue obtained from (11) into (12).

E. Diagonalization

A diagonal matrix is a square matrix in which every

element outside of the main diagonal is zero. A diagonal

matrix 𝐷 with size 𝑛 × 𝑛 is written as follows:

𝐃 =

[

𝑑1 0 0 ⋯ 0
0 𝑑2 0 ⋯ 0
0 0 𝑑3 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 𝑑𝑛]

A square matrix can be converted into a diagonal matrix

through a process called diagonalization. Matrix 𝐀 is

diagonizable if there exist an eigenvector matrix 𝐏 such

that 𝐏−𝟏𝐀𝐏 is a diagonal matrix. The formula is as follows:

𝐏−𝟏𝐀𝐏 = 𝐃

An eigenvector matrix is a matrix in which the columns are

the eigenvector of a given matrix, in this case matrix 𝐀.
Note that not all square matrices can be converted into a

diagonal matrix. For a matrix to be diagonizable, it must

have a full set of linearly independent eigenvectors. In the

case of a 3 × 3 matrix, it must have 3 linearly independent

eigenvectors to be diagonizable.

F. Matrix Exponentiation

Diagonalizing a matrix simplifies many matrix

operations and make subsequent computations much more

efficient. One such use is to compute matrix powers.

Observe the formula below:

𝐀 = 𝐏𝐃𝐏−𝟏

To find 𝐀k where k is any positive:

𝐀k = (𝐏𝐃𝐏−𝟏)k

𝐀k = 𝐏𝐃k𝐏−𝟏

The 𝐏 and 𝐏−𝟏 will cancel each other out, leaving only one

set of 𝐏 and 𝐏−𝟏. This is significantly easier to do than

directly raising 𝐀 to the power of 𝑘. Since D is a diagonal

matrix, the process can be done by simply raising the

diagonal element to the power of 𝑘 which is much more

efficient to do.

For this research however, diagonalization will be used

to simplify ODEs. By applying diagonalization to matrix 𝐀

in (9), the system will be decoupled into independent

equations which are much easier to solve. For this purpose,

one must understand what an matrix exponential is.

The Taylor series expansion of ex around x = 0 is

defined by:

𝑒𝑥 = ∑
𝑥𝑛

𝑛!

∞

𝑛=0

 Another form of this expression is:

𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+

𝑥5

5!
+ ⋯

In the context of solving systems of linear differential

equations, the matrix exponential 𝑒𝐀 is used. For the matrix

exponential 𝑒𝐀, the same principle as ex applies. The

illustration are as follows:

𝑒𝐀 = 𝐼 + 𝐀 +
𝐀2

2!
+

𝐀3

3!
+

𝐀4

4!
+

𝐀5

5!
+ ⋯

This concept is important because as discussed in

Section II.B, the solution for first-order linear differential

equation is:

𝑦(𝑥) = 𝑒𝑘𝑥𝑦(0)

where 𝑦(0) is the initial condition. Similarly for systems

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(11)

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

of linear equation, the solution can be written in terms of

matrix exponentials:

𝑦(𝑥) = 𝑒𝐀𝑥𝑦(0)

where 𝐀 is a coefficient matrix.

Despite that 𝑒𝐀𝑥 is still hard to compute, this is where

diagonalization can be applied. Using (15), 𝑒𝐀𝑥 can be

expressed as:

𝑒𝐀𝑥 = 𝐏𝑒𝐃𝑥𝐏−𝟏

Since 𝐃 is a diagonal matrix, 𝑒𝐃𝑥 can be expresses as:

𝑒𝐃𝑥 =

[

𝑒𝑑1𝑥 0 0 ⋯ 0
0 𝑒𝑑2𝑥 0 ⋯ 0
0 0 𝑒𝑑3𝑥 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 𝑒𝑑𝑛𝑥]

Therefore, whenever diagonalization is possible, it is off

the best interest to diagonalize the matrix.

G. Finding The Solution

As obtained in Section II.B, the solution of a first-order

differential equation can be found using (5). This will be

very useful in finding the solution of a higher-order ODEs,

as the ODE is now just a system of first-order differential

equations. By adapting the solution from (5), the solution

of a high-order ODE can be obtained with (20) or the

following:

𝑦(𝑥) = 𝑒𝐀𝑥𝑦(0)

Diagonalization plays a pivotal role in simplifying 𝑒𝐀𝑥.

By decomposing the 𝐀 matrix into 𝐀 = 𝐏𝐃𝐏−𝟏, computing

𝑒𝐀𝑥 becomes much easier as computing 𝑒𝐃𝑥 is easier and

less computationally taxing than computing it directly. By

applying (21), the final solution is as follows:

𝑦(𝑥) = 𝐏𝑒𝐃𝑥𝐏−𝟏𝑦(0)

III.

IMPLEMENTATION

A. Research Limitation

This paper focuses solely on the linear algebraic

approach in solving ODEs. To simplify the process, the

scope of the problem is intentionally narrowed to exclude

calculus-based approaches. The limitations are as follows:

1. Linear Algebra Approach Only: The solution of

ODEs will primarily be approached through linear

algebraic methods, particularly using eigenvalues

and eigenvectors. Although separation of variables

method is briefly mentioned, it is solely used as the

standard solution for first-order linear differential

equation in the form of
𝑑𝑦

𝑑𝑥
= 𝑘𝑦 which frequently

arises in the linear algebraic approach to solving

ODEs.

2. Exclusion of Non-Linear ODEs: Non-linear ODEs

often requires different methods to solve. Although

non-linear ODEs can be linearized, this process lies

beyond the scope of this research so only linear

ODEs are considered.

3. Matrix Diagonalization: This paper assumes that the

system of ODEs can be diagonalized when

converted to matrix notation. Non-diagonalizable

matrix are not considered.

4. Homogeneous Systems Only: This paper will only

focus on homogeneous ODE systems. Although a

linear algebraic approach can be used to find the

homogeneous solution in a non-homogeneous

system, finding the particular solution typically

requires a calculus-based approach.

B. Programming Language

The implementation of this program to solve Ordinary

Differential Equations using linear algebra techniques will

be carried out by Python. Python is chosen for the

simplicity of its syntax and the availability of numerous

libraries with powerful numerical tools, such as NumPy,

SymPy and SciPy. For this implementation, only NumPy

will be used as it provides all the necessary functionality

needed to compute the solutions of the ODEs within the

scope of this research. Additionally, the sys and json

libraries will be used to help in handling user’s input.

import numpy as np
import json
import sys

C. Input Processing

As mentioned in Section III.B, this implementation

accommodates two methods of user interaction: JSON file

inputs and terminal-based inputs. This allows user to

choose their preferred method in providing the necessary

inputs for the program to function. This program receives

3 different input parameters: coefficient, initial conditions

and the evaluation point (x).

1. The coefficients represent the coefficient of the

Ordinary Differential Equations. The coefficients

are provided in descending order of the derivative

terms.

2. The initial conditions represent the value of the

function and its derivatives at the initial point 𝑥 =
0. The number of initial conditions provided must

be equal to the order of the ODE.

3. The evaluation point (x) represent the point where

the solution to the ODE will be evaluated.

If a JSON file containing the necessary parameters is

provided, the program will call load_data_from_json

function. This will parse the file and extract the necessary

parameters required for the program’s execution.

def load_data_from_json(filename):
"""Load input from a JSON file"""
try:
 with open(filename, 'r') as file:
 data = json.load(file)

(20)

(21)

(22)

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

 return data
except FileNotFoundError:
 print("Warning: JSON file not

found. Please provide input manually.")
 return None

If a JSON file is not provided or the input is insufficient,

the program falls back to a terminal-based input. This is

done through the get_user_input function which will

prompt the user and returns an error to the user if the inputs

are not sufficient.

def get_user_input():
"""Get user input from the terminal if

a JSON file is not provided"""
coefficients = list(map(float,

input("Enter the coefficients (space-
separated): ").split()))

if len(coefficients) < 2:
 print("Error: The differential

equation must atleast be a second-order
differential equation")
 sys.exit(1)

y0 = list(map(float, input(f"Enter

initial conditions (length should be
{len(coefficients) - 1}): ").split()))

if len(y0) != len(coefficients) - 1:
 print(f"Error: The length of

initial conditions must be
{len(coefficients) - 1}.")
 sys.exit(1)

x = float(input("Enter the value of x:

"))

return coefficients, y0, x

Input processing is further handled by the main function

where the program ensures the necessary parameters are

correctly retrieved.

def main():
if len(sys.argv) == 2:
 """Check if a JSON file is

provided"""
 json_file = sys.argv[1]

 data =

load_data_from_json(json_file)

 if data is None:
 coefficients, y0, x =

get_user_input()
 else:

 coefficients =
data.get('coefficients')
 y0 = data.get('y0')
 x = data.get('x')

 if coefficients is None or

len(coefficients) < 2:
 print("Error: Coefficients

must be provided.")
 sys.exit(1)

 if y0 is None or len(y0) !=

len(coefficients) - 1:
 print(f"Error: Initial

conditions must be provided.")
 sys.exit(1)

 if x is None:
 print("Error: x value must

be provided.")
 sys.exit(1)

else:
 coefficients, y0, x =

get_user_input()

D. Convert to Matrix

To apply linear algebra principles, the given Ordinary

Differential Equation must be transformed into a matrix

representation as outlined in Section II.C. To achieve this,

start by constructing a zero matrix and populating the

superdiagonal with ones. This will leave the last row

unchanged. The last row is then populated by the negative

values of the coefficients in ascending order of the

derivatives. This is done by convert_to_matrix the

function.

def convert_to_matrix(coefficients):
"""Convert a differential equation

into a system of coupled first-order
differential equations"""
order = len(coefficients) - 1
A = np.zeros((order, order))

for i in range(order - 1):
 A[i, i + 1] = 1

for i in range(order):
 A[order - 1, i] = -

coefficients[order - i] /
coefficients[0]

return A

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

E. Computing the Eigenvalues and Eigenvectors

After converting the ODE into a matrix representation,

the next step is to calculate the eigenvalues and

eigenvectors. Fortunately, the NumPy library has a built-in

function numpy.linalg.eig that computes the

eigenvalues and eigenvectors of matrix and store it inside

an array.

eigvals, eigvecs = np.linalg.eig(A) #
Extract the eigenvalue and eigenvector
using NumPy

F. Diagonalizing and Matrix Exponentiation

Using the extracted eigenvalues and eigenvectors, the

diagonalized matrix can be constructed. Initially, matrix 𝐏

is formed by placing the eigenvectors as its column vectors.

It is very important to note that the matrix 𝐏 must be a

square matrix otherwise matrix 𝐀 cannot be diagonalized.

Although the scope of this research will only consider

diagonalizable matrices, a check is still performed to

ensure the matrix is diagonalizable.

Another important step is to calculate the inverse of

matrix 𝐏. This is important to compute the final solution.

In order for a matrix to be invertible, the determinant must

not equal zero. A diagonal matrix 𝐃 is constructed by

populating the main diagonal of a zero matrix with the

eigenvalues of matrix 𝐀.

if eig_rows == eig_columns: #
Diagonalizable

Construct the P matrix
P = eigvecs

Construct the diagonal matrix
D = np.diag(eigvals)

if np.linalg.det(P) == 0:
 print("Warning: Matrix P is

singular and cannot be inverted.")
 sys.exit(1)
else:
 P_inv = np.linalg.inv(P)

As mentioned in Section II.F, the standard solution for a

first-order differential equation can be found using (5). By

adapting the formula for matrices, the matrix exponential

𝑒𝐀𝑥 is obtained. For more efficient computation, it is

decomposed into:
𝑒𝐀𝑥 = 𝐏𝑒𝐃𝑥𝐏−𝟏

As the diagonal matrix 𝐃 has already been obtained, the

matrix 𝑒𝐃𝑥 can be easily computed.

eDx = np.diag(np.exp(D.diagonal() * x))

G. Assembling the Solution

To find the solution, all of the necessary components

must be inputted to (22):

𝑦(𝑥) = 𝐏𝑒𝐃𝑥𝐏−𝟏𝑦(0)

To ensure that the results are presented in a more

manageable form, 𝑦(𝑥) is rounded using NumPy’s built-in

numpy.round function.

y_x = P @ eDx @ P_inv @ y0

y_x_rounded = np.round(y_x, 4)

IV. RESULTS AND ANALYSIS

To test the functionality of this program, two equations

has been chosen for evaluation, one is a second-order

equation while the other is a fourth-order equation.

A. Second-Order Differential Equation

The equation is as follows:

𝑦′′ − 3𝑦′ + 2𝑦 = 0

with 𝑦(0) = 1 and 𝑦′(0) = 0.

The function is going evaluated initially at 𝑥 = 0 to

observe the result.

Coefficients:
1y'' -3y' +2y = 0

Matrix A (First-Order Representation):
[[0. 1.]
 [-2. 3.]]

Matrix P (Eigenmatrix):
[[-0.70710678 -0.4472136]
 [-0.70710678 -0.89442719]]

Matrix P (inverted):
[[-2.82842712 1.41421356]
 [2.23606798 -2.23606798]]

Diagonalized Matrix:
[[1. 0.]
 [0. 2.]]

Initial conditions:
y1(0) = 1
y2(0) = 0

Solution at x = 0
[1. -0.]

The vector returned will correspond to 𝑦 and its

derivative in ascending order. As observed, the function

correctly returned the value of 𝑦 and its derivatives when

evaluated at 𝑥 = 0. This is consistent with the initial

condition 𝑦(0) = 1 and 𝑦′(0) = 0. Changing the

evaluation point will yield different result which can be

done by changing the 𝑥 value. Below is an example of the

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

function evaluated at 𝑥 = 2.

Coefficients:
1y'' -3y' +2y = 0

Matrix A (First-Order Representation):
[[0. 1.]
 [-2. 3.]]

Matrix P (Eigenmatrix):
[[-0.70710678 -0.4472136]
 [-0.70710678 -0.89442719]]

Matrix P (inverted):
[[-2.82842712 1.41421356]
 [2.23606798 -2.23606798]]

Diagonalized Matrix:
[[1. 0.]
 [0. 2.]]

Initial conditions:
y1(0) = 1
y2(0) = 0

Solution at x = 2
[-39.82 -94.4182]

B. Fourth-Order Differential Equation

The equation is as follows:

𝑦(4) − 6𝑦′′′ + 11𝑦′′ − 6𝑦′ = 0

with 𝑦(0) = 2, 𝑦′(0) = 1, 𝑦′′(0) = 0 and 𝑦′′′(0) = −1.

Similarly to the first equation, it will be initially evaluated

at 𝑥 = 0.

Matrix A (First-Order Representation):
[[0. 1. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 1.]
[0. 6. -11. 6.]]

Matrix P (Eigenmatrix):
[[1. 0.5 0.10846523 -
0.03492151]
[0. 0.5 0.21693046 -
0.10476454]
[0. 0.5 0.43386092 -
0.31429363]
[0. 0.5 0.86772183 -
0.9428809]]

Matrix P (inverted):
[[1. -1.83333333 1.
-0.16666667]
[0. 6. -5.
1.]
[-0. -13.82931669 18.43908891

-4.60977223]
[0. -9.54521404 14.31782106
-4.77260702]]

Diagonalized Matrix:
[[0. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 2. 0.]
[0. 0. 0. 3.]]

Initial conditions:
y1(0) = 2
y2(0) = 1
y3(0) = 0
y4(0) = -1

Solution at x = 0
[2. 1. -0. -1.]

Just like in the first equation, this equation correctly

returns the initial condition when evaluated at 𝑥 = 0. Now,

try evaluating at 𝑥 = 3:

Coefficients:
1y^(4) -6y''' +11y'' -6y' = 0

Matrix A (First-Order Representation):
[[0. 1. 0. 0.]
 [0. 0. 1. 0.]
 [0. 0. 0. 1.]
 [0. 6. -11. 6.]]

Matrix P (Eigenmatrix):
[[1. 0.5 0.10846523

-0.03492151]
 [0. 0.5 0.21693046

-0.10476454]
 [0. 0.5 0.43386092

-0.31429363]
 [0. 0.5 0.86772183

-0.9428809]]

Matrix P (inverted):
[[1. -1.83333333 1.

-0.16666667]
 [0. 6. -5.

1.]
 [-0. -13.82931669

18.43908891 -4.60977223]
 [0. -9.54521404

14.31782106 -4.77260702]]

Diagonalized Matrix:
[[0. 0. 0. 0.]
 [0. 1. 0. 0.]
 [0. 0. 2. 0.]
 [0. 0. 0. 3.]]

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Initial conditions:
y1(0) = 2
y2(0) = 1
y3(0) = 0
y4(0) = -1

Solution at x = 3

[997.6324 3294.8982 10591.1246
33286.6612]

C. Potential Improvements

As stated in Section III.A, this method is not without its

fault. This technique can only be used to solve linear

homogeneous ODE. In order to solve non-linear or non-

homogeneous ODE, one must employ other calculus-based

techniques to solve the differential equations. Certain

matrix also cannot be diagonalized rendering this method

unable to solve those problems.

V. CONCLUSION

Linear algebra has proven to be an incredible powerful

tool in solving Ordinary Differential Equations. By

leveraging matrix properties, it is able to dissect a high-

order equations into simpler system of first-order ones.

While it is powerful, its important to know that it is not a

one-size-for-all solution. Linear algebraic methods are

limited to certain types of ODEs, particularly those that are

diagonizable. Many problems that involve ODE in the real

world can involve non-linear, non-diagonizable or more

complex ODEs. Collaboration with other mathematical

tools and methods are important for such scenario. Linear

algebra methods are enchanced when combined with other

approaches. A collaborative approach must be taken to

solve problem effectively and efficiently.

VI. ACKNOWLEDGMENT

The author expresses gratitude to lecturer Ir. Rila

Mandaa, M. Eng, Ph. D as the lecturer of IF2123 Linear

Algebra and Geometry course, for his guidance in finishing

this paper.

VII. APPENDIX

Full source code of the program is available at

https://github.com/DanielDPW/Makalah_IF2123_Algeo

VII. REFERENCES

[1] R. Munir. “Nilai Eigen dan Vektor Eigen (Bagian 1)”, 2023.

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/20 23-

2024/Algeo-19-Nilai-Eigen-dan-Vektor-Eigen-Bagian1-2023.pdf
(accessed: Dec. 29, 2024).

[2] R. Munir. “Nilai Eigen dan Vektor Eigen (Bagian 2)”, 2023.

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-
2024/Algeo-20-Nilai-Eigen-dan-Vektor-Eigen-Bagian2-2023.pdf

(accessed: Dec. 29, 2024).

[3] M. W. Hirsch, S. Smale, and R. L. Devaney, Differential Equations,
Dynamical Systems, and an Introduction to Chaos. 2nd ed. Boston, MA:

Academic Press, 2004.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 27 Desember 2024

Daniel Pedrosa Wu 13523099

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/20%2023-2024/Algeo-19-Nilai-Eigen-dan-Vektor-Eigen-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/20%2023-2024/Algeo-19-Nilai-Eigen-dan-Vektor-Eigen-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-20-Nilai-Eigen-dan-Vektor-Eigen-Bagian2-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-20-Nilai-Eigen-dan-Vektor-Eigen-Bagian2-2023.pdf

